
Narayan S. Hosmane Northern Illinois University CHE-9988045

A convenient and practical synthesis of B₅H₉, the pentaborane starting material for many polyborane cage compounds, has been devised by chemistry and biochemistry professor Narayan S. Hosmane and his colleagues at Northern Illinois University [*J. Am. Chem. Soc.*, 124, 7292 (2002)]. This pentaborane was for many years available to researchers for free from Air Force stockpiles that have now been destroyed.

The synthesis converts boric acid (H₃BO₃) to the sodium salt of the [B₃H₈]⁻ ion, which then reacts with NiCl₂ in benzene or heavy mineral oil to produce the pentaborane. Because the product is a reactive liquid that can explode when exposed to air, synthesis in mineral oil provides a safe way to handle and store the material. The same NiCl₂ chemistry can also be used to couple two [B₉H₁₄]⁻ ions to form *anti*-B₁₈H₂₂, the researchers demonstrate. These syntheses can be carried out with ¹⁰B-enriched boric acid, making them potentially useful for preparing boron cage compounds currently being investigated in an experimental cancer treatment known as boron neutron capture therapy.

Source: Science Concentrates, C & E News, June 24, 2002, Volume 80, Number 25, p.31.